

Conceptual understanding of scientific ideas through dialogue and experiment

Jan Sermeus, Wim Temmerman, Jelle De Schrijver, <u>Christel Balck</u> (Odisee university college, Belgium)

Tsepo Mokuku (National university of Lesotho, Lesotho)

Beatriz García Fernández (University of Castilla-La Mancha, Spain)

Belgium – Flanders

- Energy: 30% of pupils reaches minimum goals
- Other natural sciences topics: 50% reaches minimum goals

R. Janssen, E. Ameel, D. Van Nijlen, (2016) Achievement measurement on minimumstandards in first grade secondary science education commissioned by the Flemisch government

Pupils have preconceptions

\rightarrow Learning is inhibited

Davis, B. G. (1997). Misconceptions as barriers to understanding science. In National Research Council, Science teaching reconsidered: A hand book (pp 27-32). Washington, DC: National Academy. doi: 10.17226/5287

\rightarrow Poor performance on minimum goals

Preconceptions

"Rather than replacing the preconception by the scientific concept, a science class should introduce the scientific conceptual framework as an alternative framework that can also reside in the students' mind."

Mortimer, E. F., & El-Hani, C. N. (Eds.). (2014). *Conceptual profiles: A theory of teaching and learning scientific concepts* (Vol. 42). Springer Science & Business Media.

Theoretical Frame

Experimental setup

Preliminary results

"Children learn more effectively and intellectual achievements are higher when they are actively engaged in pedagogic activity, through discussion, dialogue and argumentation."

Wolfe, S., Alexander, R.J. (2008) Argumentation and dialogic teaching: alternative pedagogies for a changing world

"Transitions between dialogic and authoritative discourse to support the learning of scientific knowledge by the student."

Mortimer, E.F. (2003) Meaning making in secondary science classrooms. Maidenhead: Open University Press

Theoretical Frame

Experimental setup

Preliminary results

'A test done in order to learn something or to discover if something works or is true' Cambridge English Dictionary

Convenience sample

4h intervention

following 6 Fol steps

4h control

'good' classical class (lecture, student experiments)

Ouniversity college

Tideeënfabriek Factory of Ideas Problem

Theoretical Frame

Experimental setup

Preliminary results

WAKE UP

- What does ... mean to you?

- Write/draw your idea and pass it

Theoretical Frame

Experimental setup

Preliminary results

INTRODUCE

Scientists say that ...

SECURE

Which properties of an object contribute to the amount of energy it has ...

... dead things would not have energy?

... the sun would stop shining? ... we were unable to store energy?

Energy is a measure for possible change. The higher the energy, the more change than can be generated. It is a property. When you talk about energy you use the verb 'to have'. Energy cannot be created, nor destroyed. It can only be converted...

Theoretical Frame

Experimental setup

Preliminary results

CL	LESSON PHASES	CONTEXTUA	LIZE	INTRODUCE			SECURE										
	DISCOURSE	AUTHORITAT	IVE														
	CONTENT	Setting the m introducing a the scientific	nind, context for concept	Teaching the scientific concept as stipulated in the national science curriculum			Pupils apply the scientific concept in experimental setups and in given problems										
TIMING																	
EL	LESSON PHASES	WAKE UP	IDENTI-FY	SHAKE	INTRODU- CE	SECURE	USE										
	DISCOURSE	DIALOGIC			AUTHORI- TATIVE	DIALOGI	DIALOGIC										
	CONTENT	What do you think about an aspect of this concept?	What do others think of this aspect?	Discover that your idea does not always work.	Teaching the scientific concept as stipulated in the national science curriculum	Apply yo setups a problem differen idea and	our ideas in experimen nd in given basic is. Emphasise on the ce between the intuit I the scientific idea.	ive	Discove differe and in	er that nt con integra	the sc texts ir	cient n exp roble	tific io perin ems.	dea w nental	orks setu	in Jps	

Observations

- Teachers recognize the problem, are positive about didactical approach, take ownership and give input in PLC
- Teachers are initially worried about

Unpredictability of the lesson	same preconceptions						
timing	equal time needed						
experiments of pupils	natural, ideas pop up						
management	ownership, engagement						
Socratic stance	template (what to do, say, expect) + training!						

Problem

Theoretical Frame

Experimental setup

Preliminary results

pre post

🗖 pre 📕 post

Open answers to Heron, 2008 Everything has energy

■pre ■post

*: p<0.05, **: p<0.01, ***: p<0.001

Problem

Theoretical Frame

Experimental setup

Preliminary results

■pre ■post

pre post

13 OUNIVERSITY COLLEGE

*: p<0.05, **: p<0.01, ***: p<0.001

We developed a 6 step approach to introduce big ideas/concepts to grade 7-8 pupils, in collaboration with in-service teachers (through a DBR)

- Engaged teachers can adopt the approach (training!)
- Dialogic approach wakes up preconceptions and engages thinking

• Implementation in the teacher training curriculum.

- From teachers' materials to pupils' materials.
- Expanding to more partner schools, more international partners.
- Mapping the dialogue in the class.
- Long term effect on motivation and performance?
- What if school language ≠ mother tongue?
- Gender issues?

Conceptual understanding of scientific ideas through dialogue and experiment

Jan Sermeus, Wim Temmerman, Jelle De Schrijver, <u>Christel Balck</u> (Odisee university college, Belgium)

Tsepo Mokuku (National university of Lesotho, Lesotho)

Beatriz García Fernández (University of Castilla-La Mancha, Spain)

